

BIOS 2015 ... CHAPTER 2- Fluid, Electrolyte, and Acid-Base Imbalances											
Page	Note										
<p>Note: Key to meeting the objectives in this chapter is to learn the metabolic processes in a way that allows you to derive answers when given data. Similar to multiplication, you can only memorize a handful of products like $2 \times 2 = 4$ and $9 \times 9 = 81$. Memorization does not help when you get 2134×5623. You have to know how to multiply. Likewise in this chapter you need to understand what hydrostatic pressure and osmotic pressure are and what the lungs and kidneys do to alter the pH of the blood in order to know what happens when there is a change in a compartment.</p>											
<p>About 60% of an adult's body weight is water.</p> <p>Distribution of water in the body: two main compartments</p> <ol style="list-style-type: none"> 1. Intracellular fluid 2. Extracellular fluid <ul style="list-style-type: none"> - Intravascular fluid (the fluid within blood vessels) - Interstitial fluid (the fluid between cells in a space referred to as "the interstitium") 											
<p>Balance of water in the compartments essential for homeostasis</p> <ul style="list-style-type: none"> - assume ions A and B are similar and can substitute for each other. - one compartment has A at 100 mEq/L and another compartment has B at 5 mEq/L - now 2 mEq of A move into the compartment with B - both compartments are 1 liter so now: <ul style="list-style-type: none"> A has 98 mEq and B has 2 + 5 mEq A has only decreased by 2% but B has increased by 40% <p>So, a small change in the compartment with A produced a big change in the compartment with B.</p> <p>This is why homeostasis is so important.</p>											
<p>In the model human fluid distribution would be as follows:</p> <p>Intracellular 28 L Extracellular 15 L <ul style="list-style-type: none"> - plasma 4.5 L - interstitial 10.5 L </p> <p>The above shows that about 2/3 of the fluid is intracellular and 1/3 is extracellular.</p> <p>This distribution highlights how the intracellular compartment can be a considerable reservoir for some ions and this reservoir can affect the interstitium that can then effect what is in the circulation.</p>											
<p>A typical day of fluid intake and loss is as follows:</p> <table> <thead> <tr> <th>In:</th> <th>Out:</th> </tr> </thead> <tbody> <tr> <td>Liquid 1200 ml</td> <td>Urine 1400 ml</td> </tr> <tr> <td>Solid Food 1000 ml</td> <td>Feces 200 ml</td> </tr> <tr> <td>Cell metabolism 300 ml</td> <td>Lungs* 400 ml</td> </tr> <tr> <td></td> <td>Skin* 500 ml</td> </tr> </tbody> </table> <p>* Lungs and Skin are "Insensible fluid loss"</p>		In:	Out:	Liquid 1200 ml	Urine 1400 ml	Solid Food 1000 ml	Feces 200 ml	Cell metabolism 300 ml	Lungs* 400 ml		Skin* 500 ml
In:	Out:										
Liquid 1200 ml	Urine 1400 ml										
Solid Food 1000 ml	Feces 200 ml										
Cell metabolism 300 ml	Lungs* 400 ml										
	Skin* 500 ml										
<p>NOTE - how much can be lost in lungs (being breathed out as vapor) and skin (by sweat) as "Insensible loss" (loss that you do not notice).</p>											

<p>HYDROSTATIC AND OSMOTIC PRESSURE - The basics:</p>	<p>Hydrostatic pressure is like water pressure, it pushes. Like a hose under pressure, if you poke a hole in it water squirts out. Hydrostatic pressure pushes fluid from areas of high hydrostatic pressure to areas of low hydrostatic pressure. [high to low]</p>
<p>Osmotic pressure is driven by solute concentration. Solutes are solids like proteins and salts (ions). Water moves from regions of low solute concentration to regions of high solute concentration in order to dilute the solute. High osmotic pressure means high solute concentration that pulls fluid to the area of high osmotic pressure. Osmotic pressure pulls fluid from areas of low osmotic pressure to areas of high osmotic pressure. [low to high]</p>	
<p>Understand these basic concepts so that you can figure out any one of the combinations in a biologic system works. Note that hydrostatic and osmotic operate in an inverse fashion. High hydrostatic pushes fluid away, high osmotic pulls fluid in.</p>	
	<p>Arteriolar end of capillary bed: - hydrostatic pressure moves fluid out of the vessels into the interstitium</p> <p>Venous end of capillary bed: - because fluid was lost on the arteriolar side, solute concentration is higher. This produces osmotic pressure that pulls the fluid back into the circulation</p>
<p>Capillary</p>	<p>Fluid moves out of vessel into interstitium</p> <p>Fluid drawn back into vessel from interstitium</p> <p>* = solute Higher concentration due to water loss</p>
	<p>The above picture is all blue to highlight the water movement; the picture above it uses red and blue to highlight the oxygen content of the two halves</p>

	EDEMA: excess fluid collecting in the interstitium
	Causes of edema:
	1. high blood pressure leads to high hydrostatic pressure that drives fluid out of the vasculature into the interstitium.
	2. low serum protein leads to low osmotic pressure and the interstitium with higher osmotic pressure draws the fluid into the interstitium.
	3. lymphatic blockage - fluid can not be drained from interstitium
	4. inflammation can cause localized edema from increased capillary permeability, fluid leaks out as well as protein, then more fluid follows the protein.
	<p>Severe edema can limit range of motion as well as compromise circulation.</p>
	Pitting Edema (if you push on the edematous tissue it leaves a pit)
	Dehydration - loss of body fluid
	- see dry mucous membranes and loss of skin turgor (lift skin and it does not bounce back).
	- causes include poor fluid intake and excess fluid loss, usually from vomiting and/or diarrhea.
	How you lose the fluid is important. In the next section on acid-base balance, you will see that vomiting (losing acid) produces alkalosis (high blood pH). In contrast, diarrhea (losing base) produces acidosis (low blood pH).
	pH reflects the hydrogen ion (H^+) concentration in the blood.
	pH = $-\log [H^+ \text{ concentration}]$, this means that a higher H^+ concentration (more acidic) gives a lower pH ; conversely a lower H^+ concentration (more alkaline or basic) gives a higher pH.
	pH of 7 = neutral
	pH less than 7 = acid
	pH greater than 7 = base or alkaline
	The blood must stay in a narrow pH range of 7.35 to 7.45
	- when you move toward lower than normal pH you are said to be acidotic or have acidosis.
	- when you move toward higher than normal pH you are said to be alkalotic or have alkalosis.
	Acidosis and Alkalosis can come from either lung function (Respiratory Acidosis, Respiratory Alkalosis) or from a body function (Metabolic Acidosis, Metabolic Alkalosis).
	To understand this we must look at how the body processes acid.

ACID PROCESSING	
	Under normal conditions, acid in the blood comes from cellular metabolism (a byproduct or waste product)
	The form of the acid is "Carbonic Acid" H_2CO_3 and it forms a buffer pair with "Bicarbonate" HCO_3^-
	The carbonic acid can be processed in one of two compartments:
	1. Lungs - in the lungs H_2CO_3 breaks into CO_2 and H_2O (carbon dioxide and water). The carbon dioxide is a gas and is expelled in exhalation. Fast breathing (hyperventilation) drives off carbon dioxide and produces respiratory alkalosis. Shallow breathing limits the carbon dioxide loss and produces respiratory acidosis.
	2. Kidneys - in the kidneys, the H_2CO_3 breaks into H^+ and HCO_3^- (hydrogen ions and bicarbonate). If the blood is acidotic, the hydrogen ions will go into the urine (lowering its pH) and the bicarbonate will be resorbed and put into the blood to neutralize the acid. The converse happens in alkalosis where hydrogen ions would be retained and bicarbonate lost (raising the pH of the urine).
	Understand these processes well and you can figure out what is going on in a sick patient.
	<p>The diagram illustrates the physiological processes of acid-base balance. It shows a central 'CIRCULATING BLOOD' loop with a 'CELL' containing 'H+' and 'CO2'. Arrows indicate the movement of these substances between the cell and the blood. The process is summarized in numbered steps:</p> <ol style="list-style-type: none"> 1. Cell metabolism produces acids 2. Blood $CO_2 + H_2O \rightarrow H_2CO_3$ 3. H^+ binds to HCO_3^- in buffer 4. KIDNEYS $H_2CO_3 \rightarrow HCO_3^- + H^+$ 5. Blood has less H^+ more HCO_3^- 6. BUFFER ACTION $Acids \leftrightarrow HCO_3^-$ 7. $CO_2 + H_2O \rightarrow H_2CO_3$ 8. More acids in blood and less bicarbonate buffer 9. LUNGS $H_2CO_3 \rightarrow CO_2 + H_2O$ 10. CO_2 expired 11. Blood—Less H_2CO_3 <p>Copyright © 2014, 2011, 2006, 2002, 1997 by Saunders, an imprint of Elsevier Inc.</p>
	Compensation: When one system tries to balance the other.
	Respiratory Acidosis leads the kidneys to dump hydrogen ions and retain bicarbonate.
	Respiratory Alkalosis leads the kidneys to dump bicarbonate and retain hydrogen ions.
	Metabolic Acidosis causes fast breathing to blow off carbon dioxide.
	Metabolic Alkalosis causes shallow breathing to retain carbon dioxide.
	These four statements should make sense if you understand how the system works.

	<p>Causes of Respiratory Acidosis:</p> <p>Acute problems Pneumonia, airway obstruction, chest injuries Drugs that depress the respiratory control center</p> <p>Chronic respiratory acidosis Common with chronic obstructive pulmonary disease</p>
	<p>Causes of Respiratory Alkalosis:</p> <p>Hyperventilation: Caused by anxiety, high fever, overdose of aspirin Head injuries Brainstem tumor</p>
	<p>Causes of Metabolic Acidosis:</p> <p>Excessive loss of bicarbonate ions to buffer hydrogen (HCO_3^- levels decrease in blood) <ul style="list-style-type: none"> - Diarrhea—loss of bicarbonate from intestines Renal disease or failure <ul style="list-style-type: none"> - Decreased excretion of acids - Decreased production of bicarbonate ions Metabolic imbalance <ul style="list-style-type: none"> - Lactic acidosis from anaerobic metabolism. Hypoxia, hypoperfusion Sepsis Shock Inborn errors in metabolism. </p>
	<p>Causes of Metabolic Alkalosis:</p> <p>Increase in serum bicarbonate ion <ul style="list-style-type: none"> - Loss of hydrochloric acid from stomach (chloride lost from stomach compensated by chloride in blood, compensated by bicarbonate from red blood cells - SEE Diagram below) - Hypokalemia (potassium going into cells, opposite of acidosis with potassium coming out of cells). - Excessive ingestion of antacids (bicarbonate). </p>
	<p>The diagram illustrates the pathophysiology of hypochloremic alkalosis. It shows a stomach with a dashed line representing the mucosal barrier. On the left, a box labeled '1. Vomiting — Lose HCl' has an arrow pointing to the stomach. Inside the stomach, box '2. Low Cl^-' indicates a low chloride level. Box '3. Cl^- Moves from ISF to gastric secretions' shows chloride moving from the interstitial fluid (ISF) into the stomach lumen. Box '4. Cl^- Shifts from plasma to ISF' shows chloride moving from the blood into the ISF. Box '5. HCO_3^- Bicarbonate ion moves out of erythrocyte to replace lost Cl^-' shows bicarbonate moving out of an erythrocyte to replace the chloride lost from the blood. Box '6. Increased in blood leads to alkalosis' indicates the resulting increase in blood bicarbonate levels. The diagram also shows bicarbonate moving from the blood into an erythrocyte. A legend at the bottom defines symbols: Cl^- = CHLORIDE ION, HCO_3^- = BICARBONATE ION, ISF = INTERSTITIAL FLUID.</p>

ELECTROLYTES - IONS

Ions exist in all of the fluid compartments - extracellular and intracellular.

They are partitioned differently:

Distribution of Major Electrolytes (mEq/L)

Ion	Intracellular	Blood
Sodium (Na ⁺)	10	142
Potassium (K ⁺)	160	4
Calcium (Ca ⁺⁺)	variable	5
Magnesium (Mg ⁺⁺)	35	3
Bicarbonate (HCO ₃ ⁻)	8	27
Chloride (Cl ⁻)	2	103
Phosphate (HPO ₄ ⁻)	140	2

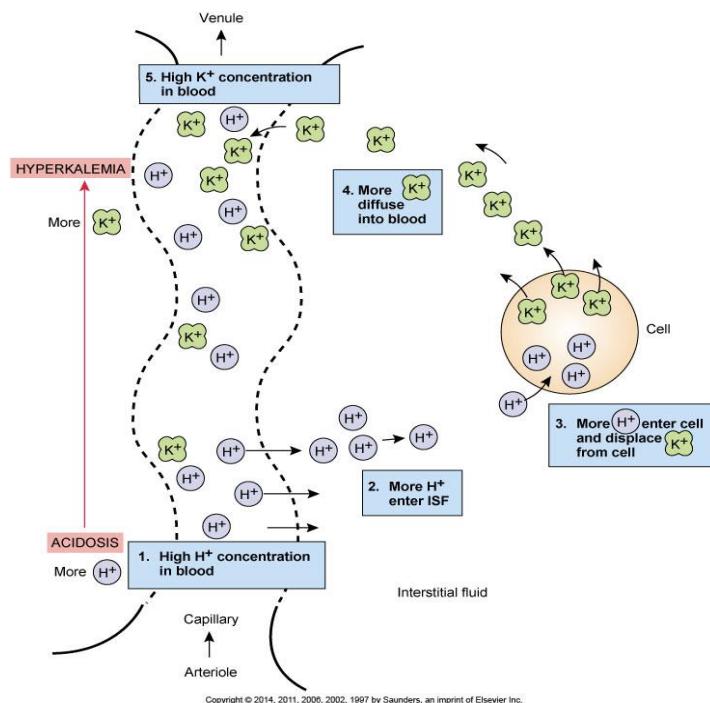
Positive = cations, Negative = anions

Sodium (hyper, hyponatremia):

primary cation in blood and extracellular fluid

90% of solute in extracellular fluid (affecting osmotic pressure).

Lost in sweat, vomiting and diarrhea.


Affected by water consumption and kidney function

Potassium (hyper, hypokalemia):

primary cation in intracellular fluid

blood levels have profound effect on heart

abnormal potassium levels cause changes in cardiac conduction and are life-threatening!

Relationship of Hydrogen and Potassium Ions:

Acidosis (low blood pH) is characterized by increased hydrogen ions (H⁺) in the blood.

H⁺ moves to interstitium then into cells pushing potassium (K⁺) out.

K⁺ gets back into blood stream producing increased blood K⁺

	<p>Review of calcium (hyper, hypocalcemia):</p> <p>Stored in bone</p> <p>Balance controlled by hormones:</p> <ul style="list-style-type: none"> - parathyroid hormone (PTH) raises calcium in blood - calcitonin lowers calcium in blood (tones the bones). - Vitamin D promotes calcium absorption from intestine Ingested or synthesized in skin in the presence of ultraviolet rays Activated in kidneys
	<p>Functions of Calcium:</p> <p>Provides structural strength for bones and teeth</p> <p>Maintenance of the stability of nerve membranes</p> <p>Required for muscle contractions (heart and skeletal muscle).</p> <p>Necessary for many metabolic processes and enzyme reactions</p> <p>Essential for blood clotting</p>
	<p>Magnesium</p> <p>Intracellular ion</p> <p>Hyper, Hypomagnesemia</p> <p>Phosphate</p> <p>Bone and tooth mineralization</p> <p>Phosphate buffer system—acid-base balance</p> <p>Reciprocal relationship with serum calcium</p> <p>Hyper, Hypophosphatemia</p> <p>Chloride</p> <p>Major extracellular anion</p> <p>Chloride levels related to sodium levels</p> <p>Can shift in response to acid-base imbalances.</p> <p>Hyper, Hypochloremia</p>
	<p>Cl- and HCO₃- are most important for acid-base balance in body</p>