


Chapter 21

Congenital and Genetic Disorders

Genetic Control

- Genetic information stored in chromosomes
 - 23 pairs in humans
 - 22 pairs—autosomes
 - One pair of sex chromosomes—XX or XY
 - Karyotype
 - Visual representation of chromosomes arranged in order of size
 - Used in diagnosis of chromosomal disorders

Examples of Karyotypes

Courtesy of Cytogenetics Laboratory, North York General Hospital, Toronto, Ontario, Canada.

•Copyright © 2014, 2011, 2006 by Saunders, an imprint of Elsevier, Inc.

Genetic Control (Cont.)

- Genotype
 - Actual genetic information carried by the individual
 - All cells except the gametes of an individual have the same genotype.
 - Not all genes are expressed in all cells.
- Phenotype
 - Expression of genes
 - Appearance of the individual's characteristics

Congenital Disorders

- Disorders present at birth
 - Include inherited or developmental disorders
- Inherited disorders may be caused by
 - Single-gene expression
 - (recessive / dominant)
 - Chromosomal defect
 - (monosomy, trisomy, translocations)
 - Polygenic expression
 - Multiple genes must be damaged to produce disease.

Congenital Disorders (Cont.)

- Teratogenic agents
 - Agents that cause damage during embryonic or fetal development and produce a dysmorphic fetus.
- Polygenic - Multifactorial disorders
 - Large number of disorders are of this type
 - Often have pattern of familial inheritance
 - Environmental component
 - Example: Diabetes – Diet.
 - Asthma – allergens in environment.

Congenital Disorders (Cont.)

- Other congenital or developmental disorders
 - Result from premature birth
 - Difficult labor and delivery
 - Cerebral palsy is an example.

(Punnett Square – Single Gene Defects)

AUTOSOMAL RECESSIVE DISORDERS – Example: Cystic fibrosis

		CARRIER PARENT		Probability	AFFECTED PARENT		Probability
		C	c		NORMAL C		
CARRIER C	C	C C normal	C c carrier	25% normal 50% carrier 25% affected	C c		All children carriers (heterozygous)
	c	C c carrier	c c affected		C c	C c	
		Copyright © 2014, 2011, 2006, 2002, 1997 by Saunders, an imprint of Elsevier Inc.					

AUTOSOMAL DOMINANT DISORDERS – Example: Huntington's chorea

		AFFECTED PARENT		Probability	AFFECTED PARENT		Probability
		H	h		NORMAL h		
NORMAL h	H	H h affected	h h normal	50% affected child	H H		75% affected 25% normal
	h	H h affected	h h normal		H h	h h	
		Copyright © 2014, 2011, 2006, 2002, 1997 by Saunders, an imprint of Elsevier Inc.					

Autosomal Recessive Disorders

- Cystic fibrosis
- PKU
- Tay-Sachs disease

Autosomal Dominant Disorders

- Adult polycystic kidney disease
- Huntington's disease
- Familial hypercholesterolemia
- Marfan's syndrome

X-Linked Disorders

- Recessive

- Allele carried on the X chromosome but not the Y chromosome
- Manifested in all males because they have only one X chromosome.
- Heterozygous females are carriers.
- Homozygous recessive females may be affected.
- Inheritance may appear to skip generations.
- Examples:
 - Duchenne muscular dystrophy
 - Classic hemophilia

X-Linked Disorders (Cont.)

- Dominant disorder

- Heterozygous males and females affected
- Reduced penetrance in females
- Fragile X syndrome is an example.
 - Most common genetic cause of cognitive deficits
 - Effects are variable and related to the extent of mutation of the allele.

X-Linked Recessive Disorder (Punnett Square)

X-LINKED RECESSIVE DISORDERS – Example: Duchenne's muscular dystrophy			
MOTHER CARRIER		MOTHER CARRIER	
		X_D	X_d
NORMAL X_D	X_D	X_D X_D female normal	X_D X_d female carrier
	Y	X_D Y male normal	X_d Y male affected
FATHER C	X_D	Probability	
	Y	Females— 50% normal 50% carriers	Males— 50% normal 50% affected
AFFECTED X_d	X_D	X_d X_D female carrier	X_d X_d female affected
	Y	X_D Y male normal	X_d Y male affected
		Probability	
		Females— 50% carrier 50% affected	Males— 50% normal 50% affected

Copyright © 2014, 2011, 2006, 2002, 1997 by Saunders, an imprint of Elsevier Inc.

Chromosomal Disorders

- Down syndrome
 - Trisomy 21
 - May be caused by nondisjunction or translocation
- Turner syndrome XO
 - Affects females
 - Short stature
 - Infertility
- Klinefelter syndrome XXY
 - Extra X chromosome is present
 - Infertility

Down Syndrome

- Trisomy 21
- Common chromosomal disorder
 - Affects physical and mental development
- Risk increases with maternal age
- Triple or quad screening test and/or first-trimester screening test (ultrasound + maternal blood screening)
 - May be used to screen for risk of Down syndrome
 - Amniocentesis or chorionic villi sampling used to confirm the disorder prior to birth

Characteristics of Down Syndrome

- Small head, round face, flat facial profile
- Slanted eyes and epicanthic fold
- Large tongue, high-arched palate
- Small hands, single palmar crease
- Short stature
- Muscles tend to be hypotonic; loose joints
- Delayed developmental stages
- Cognitive impairment ranges from mild to major
- Delayed or incomplete sexual development
 - Males infertile
 - Females have lower rate of conception

From Zitelli BJ, Davis HW: *Atlas of Pediatric Physical Diagnosis*, ed 4, St. Louis, 2002, Mosby.

Developmental Disorders

- Exposure to drugs, chemicals, or radiation during childbearing years
- Exposure to known teratogens in the first 2 months of development
 - Impairs organogenesis
- TORCH—acronym for maternal infections that can result in anomalies
 - Routine prenatal screening tests

Diagnostic Tools

- Testing may be available.
 - Prior to conception
 - During first trimester of pregnancy
 - In newborn
- Testing recommended for:
 - Family history of a specific disease
 - Previous birth to child with abnormality
 - Ethnic groups with high risk for specific disease
 - Pregnant women > 35 years of age

Diagnostic Tools (Cont.)

- Blood tests of pregnant woman
 - Alpha-fetoprotein testing
- In utero testing
 - Amniocentesis
 - Chorionic villi assay
- Neonatal testing
 - Excreted metabolites (e.g., PKU)
 - Blood testing

Genetic Engineering

- Isolating, copying, and transplanting genes
 - In microorganisms, plants, animals, humans
 - Used in agriculture to produce transgenic or genetically modified foods
- Ultimate goal
 - Insert normally functioning allele to prevent disease
 - Technically possible but clinical trials have not been uniformly successful

Gene Therapy

- Identifies gene and protein responsible for condition
- Determines how gene expression is controlled
- Produces drug that will inhibit gene expression
- Research focus on cancer growth promoters has resulted in these types of drugs.

Genetic Screening and DNA Testing

- Screening at-risk populations for a specific allele
 - Costly
 - Concerns regarding privacy and access to information
- DNA testing to identify individuals for paternity or forensic purposes
- Legislation has been drafted in the United States to protect the genetic rights of individuals.
 - Health care
 - Employment
 - Insurance